Removal of pharmaceuticals and unspecified contaminants in sewage treatment effluents by activated carbon filtration and ozonation: Evaluation using biomarker responses and chemical analysis.

Beijer K, Björlenius B, Shaik S et al.

Department of Organismal Biology, Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden.

Chemosphere. Feb 2017.

Traces of active pharmaceutical ingredients (APIs) and other chemicals are demonstrated in effluents from sewage treatment plants (STPs) and they may affect quality of surface water and eventually drinking water. Treatment of effluents with granular activated carbon (GAC) or ozone to improve removal of APIs and other contaminants was evaluated at two Swedish STPs, Käppala and Uppsala (88 and 103 APIs analyzed). Biomarker responses in rainbow trout exposed to regular and additionally treated effluents were determined. GAC and ozone treatment removed 87-95% of the total concentrations of APIs detected. In Käppala, GAC removed 20 and ozonation (7 g O3/m(3)) 21 of 24 APIs detected in regular effluent. In Uppsala, GAC removed 25 and ozonation (5.4 g O3/m(3)) 15 of 25 APIs detected in effluent. GAC and ozonation also reduced biomarker responses caused by unidentified pollutants in STP effluent water. Elevated ethoxyresorufin-O-deethylase (EROD) activity in gills was observed in fish exposed to effluent in both STPs. Gene expression analysis carried out in Käppala showed increased concentrations of cytochrome P450 (CYP1As and CYP1C3) transcripts in gills and of CYP1As in liver of fish exposed to effluent. In fish exposed to GAC- or ozone-treated effluent water, gill EROD activity and expression of CYP1As and CYP1C3 in gills and liver were generally equal to or below levels in fish held in tap water. The joint application of chemical analysis and sensitive biomarkers proved useful for evaluating contaminant removal in STPs with new technologies.


Leave a Reply

Your email address will not be published. Required fields are marked *