Comparison between cryoablation and irreversible electroporation of rabbit livers at a location close to the gallbladder.

Zeng J, Qin Z, Zhou L et al.

School of Medicine, Jinan University, Guangdong Province, Guangzhou, China; Fuda Cancer Hospital, Jinan University School of Medicine, Guangdong Province, Guangzhou, China.

Radiology and oncology. Mar 2017.

The ablation of liver tumors located close to the gallbladder is likely to lead to complications. The aim of this article is to compare the safety and efficacy of irreversible electroporation (IRE) and cryoablation in rabbit livers at a location close to the gallbladder.We performed cryoablation (n = 12) and IRE (n = 12) of the area of the liver close to the gallbladder in 24 New Zealand white rabbits in order to ensure gallbladder damage. Serum aminotransferase and serum bilirubin levels were measured before and after the ablation. Histopathological examination of the ablation zones in the liver and gallbladder was performed on the 7(th) day after the ablation.Seven days after the ablation, all 24 animals were alive. Gallbladder perforation did not occur in the IRE group; only mucosal epithelial necrosis and serous layer edema were found in this group. Gallbladder perforation occurred in four rabbits in the cryoablation group. Serum aminotransferase and serum bilirubin levels obviously increased in both groups by Day 3 and decreased gradually thereafter. The elevation in aminotransferase and bilirubin levels was greater in the cryoablation group than the IRE group. Pathological examination revealed complete necrosis of the liver parenchyma from the ablation center to the gallbladder in both groups, but bile duct and granulation tissue hyperplasia were observed in only the IRE group. Full-thickness gallbladder-wall necrosis was seen in the cryoablation group.For ablation of the liver area near the gallbladder, IRE is superior to cryoablation, both in terms of safety (no gallbladder perforation in the IRE group) and efficacy (complete necrosis and rapid recovery in the IRE group).